Skip to main content
Immunology logoLink to Immunology
. 1990 Dec;71(4):573–580.

Influence of ocular surface antigen on the postnatal accumulation of immunoglobulin-containing cells in the rat lacrimal gland.

D A Sullivan 1, L Yee 1, A S Conner 1, L E Hann 1, M Olivier 1, M R Allansmith 1
PMCID: PMC1384881  PMID: 2279741

Abstract

The objective of the present study was to determine whether antigenic presence on the ocular surface might directly influence the development or expression of the lacrimal secretory immune system. Experiments were designed to: (i) analyse the temporal accumulation of IgA-, IgG- and IgM-containing cells in lacrimal tissue during postnatal development (6-27 days of age); (ii) examine whether prevention of antigenic exposure to the ocular surface by unilateral tarsorrhaphy might inhibit lymphocyte immigration into the ipsilateral gland during development; and (iii) assess whether a non-invasive antigen, after placement on the ocular surface of infant or adult rats, undergoes retrograde transfer to the lacrimal gland. Our results demonstrated that: (i) the accumulation of IgA-, IgG- and IgM-containing cells in lacrimal tissue was most pronounced during the 6-day period after eyelid opening (15 days of age). The pattern of appearance of these Ig-containing cells, which were predominantly IgA-positive, was identical in both left and right lacrimal glands. (ii) Closure of the left lid by tarsorrhaphy from 10 to 18 days of age had no effect on the accumulation of IgA-, IgG- and IgM-containing cells in the left lacrimal tissue compared to cell numbers in the right gland. (iii) Following placement of radiolabelled albumin on the ocular surface, antigen was almost completely cleared within 1-2 hr. Analysis of lacrimal glands showed no significant accumulation of radioactivity at any time-point, either in the presence or absence of ocular inflammation. In contrast, up to 17.8% of radioactivity was found in the stomach 1-2 hr following topical antigen application. Overall, our results show that a rapid development of the lacrimal secretory immune system occurs between 15 and 21 days of age. This process does not appear to be dependent upon local antigenic stimulation. In addition, our findings indicate that a non-invasive antigen, when applied to the ocular surface, does not undergo retrograde transfer to the lacrimal gland. Instead, antigen appears to be cleared primarily through the gastrointestinal tract.

Full text

PDF
573

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allansmith M. R., Gillette T. E. Secretory component in human ocular tissues. Am J Ophthalmol. 1980 Mar;89(3):353–361. doi: 10.1016/0002-9394(80)90004-5. [DOI] [PubMed] [Google Scholar]
  2. Allansmith M. R., Gudmundsson O. G., Hann L. E., Keys C., Bloch K. J., Taubman M. A., Sullivan D. A. The immune response of the lacrimal gland to antigenic exposure. Curr Eye Res. 1987 Jul;6(7):921–927. doi: 10.3109/02713688709034860. [DOI] [PubMed] [Google Scholar]
  3. Bergmann K. C., Waldman R. H., Tischner H., Pohl W. D. Antibody in tears, saliva and nasal secretions following oral immunization of humans with inactivated influenza virus vaccine. Int Arch Allergy Appl Immunol. 1986;80(1):107–109. doi: 10.1159/000234034. [DOI] [PubMed] [Google Scholar]
  4. Blázquez E., Montoya E., López Quijada C. Relationship between insulin concentrations in plasma and pancreas of oetal and weanling rats. J Endocrinol. 1970 Dec;48(4):553–561. doi: 10.1677/joe.0.0480553. [DOI] [PubMed] [Google Scholar]
  5. Buts J. P., De Keyser N., Dive C. Intestinal development in the suckling rat: effect of insulin on the maturation of villus and crypt cell functions. Eur J Clin Invest. 1988 Aug;18(4):391–398. doi: 10.1111/j.1365-2362.1988.tb01029.x. [DOI] [PubMed] [Google Scholar]
  6. Carney L. G., Mauger T. F., Hill R. M. Buffering in human tears: pH responses to acid and base challenge. Invest Ophthalmol Vis Sci. 1989 Apr;30(4):747–754. [PubMed] [Google Scholar]
  7. Chandler J. W., Gillette T. E. Immunologic defense mechanisms of the ocular surface. Ophthalmology. 1983 Jun;90(6):585–591. doi: 10.1016/s0161-6420(83)34510-3. [DOI] [PubMed] [Google Scholar]
  8. Czinn S. J., Lamm M. E. Selective chemotaxis of subsets of B lymphocytes from gut-associated lymphoid tissue and its implications for the recruitment of mucosal plasma cells. J Immunol. 1986 May 15;136(10):3607–3611. [PubMed] [Google Scholar]
  9. Douglas R. G., Jr, Rossen R. D., Butler W. T., Couch R. B. Rhinovirus neutralizing antibody in tears, parotid saliva, nasal secretions and serum. J Immunol. 1967 Aug;99(2):297–303. [PubMed] [Google Scholar]
  10. Ferguson T. A., Hayashi J. D., Kaplan H. J. Regulation of the systemic immune response by visible light and the eye. FASEB J. 1988 Nov;2(14):3017–3021. doi: 10.1096/fasebj.2.14.2972579. [DOI] [PubMed] [Google Scholar]
  11. Franklin R. M., McGee D. W., Shepard K. F. Lacrimal gland-directed B cell responses. J Immunol. 1985 Jul;135(1):95–99. [PubMed] [Google Scholar]
  12. Gudmundsson O. G., Sullivan D. A., Bloch K. J., Allansmith M. R. The ocular secretory immune system of the rat. Exp Eye Res. 1985 Feb;40(2):231–238. doi: 10.1016/0014-4835(85)90008-9. [DOI] [PubMed] [Google Scholar]
  13. Hall J. M., O'Connor G. R. Correlation between ocular inflammation and antibody production. II. Hemolytic plaque formation by cells of the uveal tract. J Immunol. 1970 Feb;104(2):440–447. [PubMed] [Google Scholar]
  14. Hall J. M., Pribnow J. F. IgG and IgA antibody in tears of rabbits immunized by topical application of ovalbumin. Invest Ophthalmol Vis Sci. 1989 Jan;30(1):138–144. [PubMed] [Google Scholar]
  15. Jackson S., Mestecky J. Oral-parenteral immunization leads to the appearance of IgG auto-anti-idiotypic cells in mucosal tissues. Cell Immunol. 1981 May 15;60(2):498–502. doi: 10.1016/0008-8749(81)90290-2. [DOI] [PubMed] [Google Scholar]
  16. Kahn M., Barney N. P., Briggs R. M., Bloch K. J., Allansmith M. R. Penetrating the conjunctival barrier. The role of molecular weight. Invest Ophthalmol Vis Sci. 1990 Feb;31(2):258–261. [PubMed] [Google Scholar]
  17. Maestroni G. J., Conti A., Pierpaoli W. The pineal gland and the circadian, opiatergic, immunoregulatory role of melatonin. Ann N Y Acad Sci. 1987;496:67–77. doi: 10.1111/j.1749-6632.1987.tb35747.x. [DOI] [PubMed] [Google Scholar]
  18. Malaty R., Dawson C. R., Wong I., Lyon C., Schachter J. Serum and tear antibodies to Chlamydia after reinfection with guinea pig inclusion conjunctivitis agent. Invest Ophthalmol Vis Sci. 1981 Dec;21(6):833–841. [PubMed] [Google Scholar]
  19. Mestecky J., McGhee J. R., Arnold R. R., Michalek S. M., Prince S. J., Babb J. L. Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest. 1978 Mar;61(3):731–737. doi: 10.1172/JCI108986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987 Jul;7(4):265–276. doi: 10.1007/BF00915547. [DOI] [PubMed] [Google Scholar]
  21. Montgomery P. C., Ayyildiz A., Lemaitre-Coelho I. M., Vaerman J. P., Rockey J. H. Induction and expression of antibodies in secretions: the ocular immune system. Ann N Y Acad Sci. 1983 Jun 30;409:428–440. doi: 10.1111/j.1749-6632.1983.tb26887.x. [DOI] [PubMed] [Google Scholar]
  22. Nair P. N., Schroeder H. E. Duct-associated lymphoid tissue (DALT) of minor salivary glands and mucosal immunity. Immunology. 1986 Feb;57(2):171–180. [PMC free article] [PubMed] [Google Scholar]
  23. Owen R. L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology. 1977 Mar;72(3):440–451. [PubMed] [Google Scholar]
  24. Pappo J., Ebersole J. L., Taubman M. A. Phenotype of mononuclear leucocytes resident in rat major salivary and lacrimal glands. Immunology. 1988 Jun;64(2):295–300. [PMC free article] [PubMed] [Google Scholar]
  25. Sacks E. H., Wieczorek R., Jakobiec F. A., Knowles D. M., 2nd Lymphocytic subpopulations in the normal human conjunctiva. A monoclonal antibody study. Ophthalmology. 1986 Oct;93(10):1276–1283. doi: 10.1016/s0161-6420(86)33580-2. [DOI] [PubMed] [Google Scholar]
  26. Setzer P. Y., Nichols B. A., Dawson C. R. Unusual structure of rat conjunctival epithelium. Light and electron microscopy. Invest Ophthalmol Vis Sci. 1987 Mar;28(3):531–537. [PubMed] [Google Scholar]
  27. Sullivan D. A., Allansmith M. R. Hormonal influence on the secretory immune system of the eye: endocrine interactions in the control of IgA and secretory component levels in tears of rats. Immunology. 1987 Mar;60(3):337–343. [PMC free article] [PubMed] [Google Scholar]
  28. Sullivan D. A., Allansmith M. R. The effect of aging on the secretory immune system of the eye. Immunology. 1988 Mar;63(3):403–410. [PMC free article] [PubMed] [Google Scholar]
  29. Sullivan D. A., Bloch K. J., Allansmith M. R. Hormonal influence on the secretory immune system of the eye: androgen regulation of secretory component levels in rat tears. J Immunol. 1984 Mar;132(3):1130–1135. [PubMed] [Google Scholar]
  30. Sullivan D. A., Colby E. B., Hann L. E., Allansmith M. R., Wira C. R. Production and utilization of a mouse monoclonal antibody to rat IgA: identification of gender-related differences in the secretory immune system. Immunol Invest. 1986 Jun;15(4):311–325. doi: 10.3109/08820138609052950. [DOI] [PubMed] [Google Scholar]
  31. Sullivan D. A., Hann L. E. Hormonal influence on the secretory immune system of the eye: endocrine impact on the lacrimal gland accumulation and secretion of IgA and IgG. J Steroid Biochem. 1989;34(1-6):253–262. doi: 10.1016/0022-4731(89)90089-7. [DOI] [PubMed] [Google Scholar]
  32. Sullivan D. A., Wira C. R. Variations in free secretory component levels in mucosal secretions of the rat. J Immunol. 1983 Mar;130(3):1330–1335. [PubMed] [Google Scholar]
  33. Taylor H. R., Whittum-Hudson J., Schachter J., Caldwell H. D., Prendergast R. A. Oral immunization with chlamydial major outer membrane protein (MOMP). Invest Ophthalmol Vis Sci. 1988 Dec;29(12):1847–1853. [PubMed] [Google Scholar]
  34. Tilney N. L. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971 Sep;109(Pt 3):369–383. [PMC free article] [PubMed] [Google Scholar]
  35. Tseng J. Transfer of lymphocytes of Peyer's patches between immunoglobulin allotype congenic mice: repopulation of the IgA plasma cells in the gut lamina propria. J Immunol. 1981 Nov;127(5):2039–2043. [PubMed] [Google Scholar]
  36. Wieczorek R., Jakobiec F. A., Sacks E. H., Knowles D. M. The immunoarchitecture of the normal human lacrimal gland. Relevancy for understanding pathologic conditions. Ophthalmology. 1988 Jan;95(1):100–109. doi: 10.1016/s0161-6420(88)33228-8. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES